天下无贼
上一章:泡泡 | 下一章:亚当回归 |
亲们,电脑与手机端都用www.xiuluoxiaoshuo.com打开访问,非常方便,一定要记住哦。
我们生活在充斥骗术和老千的世界,从国家层面直到社会下层。文中的张氏兄弟一击而中,完身而退,可谓骗子中之大侠。
举办过多届的中、韩、日三国围棋擂台赛又要开始了,这次三国各派出五名最有实力的棋手上阵。人们普遍认为这是一场空前激烈的比赛,因为在棋坛上称霸多年的韩国“二李(李昌镐、李世石)”最近已经受到中国棋手罗冼河、常昊的强力冲击,沉闷多年的日本棋坛也已经强力复苏,像依田依基、山下敬吾和赵治勋等最近都有着不俗的战绩。不过这些棋坛名人的大名,还有棋赛的具体进程,与本文的内容没有什么实质关系,尽可虚化。以下用中、韩、日的A、B、C、D、E代替。
此次擂台赛最大的亮点在于中国博彩业的强力参与。中国最负盛名的博彩公司──诚信公司主办,采用累进式计分,具体办法是这样的:每股投注为200元,彩民一次性投注后可以在网上参加每次比赛的竞猜,赢一次得一分。总的比赛场数是不定的,取决于各方的战绩,如果每方都战到“老将对面”,则共比赛14次。届时,得14分(即每次竞猜全对)、13分和12分的彩民将分别获一、二、三等奖,其余人被淘汰。按博彩业惯例,所得彩金的40%用于营运费用、税金及慈善事业,其余60%由中奖者分享,其中一等奖获得者将分得其中的50%。
大致做一个估算,假如共投500万注,彩金总额为10亿元,其中一等奖可得3亿元。又假如共有100个一等奖得主,则每人分得300万元。无疑这是个很有吸引力的数字。
该博彩活动的最大困难,是如何克服国人根深蒂固的“怀疑一切”
心理。这也难怪,虽然西安宝马博彩大弊案已是陈年旧事,但坑灰未冷,众彩民心有余悸。须知该弊案是一位最无畏的受害彩民以生命做赌注,引起新闻界的注意,才最终得以水落石出。但一般彩民掂量掂量自己的勇气,怕是不大能做到这一点,所以也就退避三舍了。诚信公司为了唤醒国人的勇气,采取了不少措施,特别是聘请瑞士著名公证机构若曼逊公证处作监督。这个措施非常有效地恢复了国民对社会的信任,最终诚信公司卖出了1000万注,大获成功。
后来的事实证明,诚信公司在此次博彩中确实是清清白白、童叟无欺的。虽然此后仍有人在网上骂他们欺骗、做套子,说一等奖得主都是公司的关系人等等,但这些指责并无根据。这些骂街者多半是那些猜对了11次或10次的彩民,即那些“只差一两步就能获奖”的人,他们的心情可以理解,骂几句泄泄心火,不久也就风平浪静了。
但既然本文的题目是“天下无贼”,读者都不傻,自然会猜到文中必然涉及骗子和受害者。这要从一个外国人的参与说起。
话说北京高华盛证券公司的美籍职员切尼姆斯也参加了投注,这主要是缘于他对中国围棋的兴趣。切尼姆斯是有名的中国通,北京话说得倍儿棒,熟读《孙子兵法》、《三国演义》、《左传》和《史记》,也会下围棋,水平不高,只是业余三段。他知道,自从1997年电脑“深蓝”战胜了国际象棋特级大师卡斯帕罗夫之后,电脑棋手已经在国际象棋、中国象棋、印度象棋、各类跳棋等所有棋类运动中横扫人类棋手──除了围棋。在这个领域里,电脑与人相比只相当于一个智障孩童!即使最优秀的电脑程序,在与最低段位的棋手比赛时,还要后者让十子才能勉强战平。偏偏围棋规则又是各种棋类中最简约的,基本上只有一条:排除四面被对方围着而没有空隙的状态。最简约的棋规却成就了最深奥的棋理,可以说,至少在发明棋类博弈方面,中国古人的智慧是世界第一,甚至多出了几个数量级。所以,尽管中国目前的科学成就有限,但他仍对中国人的智慧心存敬畏。
与中国彩民的心态不同,切尼姆斯在投注时根本没有考虑过其中是否会有猫腻。原因很简单,在美国,即使最无耻最胆大的赌业老板也不敢出老千。因为美国法律在这方面有非常严格有效的条文,严格的法律造就了美国博彩业的绝对诚信。
切尼姆斯参加投注有一个非常有利的条件。他因为自己的工作性质,可以很方便地收集到所有参赛棋手的详细资料,诸如某两位选手之间的历史战绩、某人的心理素质,甚至未来某次比赛时双方棋手的身体状况等等,他都能轻易弄到。把这些详尽资料输到电脑中,再用一个专用博弈软件来预测胜负。当然预测结果不会绝对准确──宇宙中永远没有绝对准确的预测或占卜──但无疑可大大提高胜算。虽说这样占用了一点工作资源,多少有点假公济私的味道,但300万元人民币,可是一笔不小的业余收入啊。
三国擂台赛的第一场比赛,按抽签结果是中国的E对阵日本的E。这场比赛悬念不大,因为从历次战绩看,中方棋手占有很大优势。在切尼姆斯的个人电脑预测中,胜负比率达到9比1。所以他当然是对中方下注,而且赢了第一分。不久他收到了一封奇怪的电子邮件,故事就从这里开始了。
先生/女士:
我们已经得知(当然是用了某种不大合法的技术手段啦,敬请原谅)您参与了三国围棋擂台赛的第一次竞猜,并赢了第一分。向你祝贺!谨通知你,下次比赛即中国E对阵韩国E时,比赛结果是韩方取胜。我们的预测铁定准确,绝无失误,建议你一定按我们的预测投注,以确保你的积分。
对不起,我们窥探了你的小小隐私,再次致歉!以后你就会知道,你在这件事上的所得必然大于所失。
两个游戏风尘之大虾
某年某月某日
接到这封邮件之前,切尼姆斯已经用自己的方法作了预测,结果倒是和信中说的一样。尽管这样,他对这封来信也根本没有重视,他不相信任何人的预测能比他的资料和软件更准确。至于这封邮件的动机,可能是行骗,也可能是哪个网虫的捣蛋,现在网上有很多这样的好事之人。他没有理睬它。
这次比赛果然韩方胜,切尼姆斯又赢了一分。然后,他又收到那两个匿名者的邮件:
先生/女士:
我们得知你按我们的通知下了注,从而赢得了第二分,谢谢你对我们的信任!谨通知你,下次比赛即韩国的E对日本的D时,比赛结果将是日本取胜。我们的预测铁定准确,绝无失误。相信你这一次仍会按我们的预测投注,以确保你的积分。
两个游戏风尘之大虾
某年某月某日
切尼姆斯看了这个预测结果,不免摇头。日本的D先生是一位旅日华人,曾是日本的超一流选手,但今天已经廉颇老矣。围棋其实也是吃青春饭的一种残酷运动,这里可不是老人的天堂。切尼姆斯用自己的资料和软件作了预测:D的胜负比率仅为2比8。那两个“大虾”这次肯定看走眼了,要不就是有意骗人。他打开诚信博彩公司的网站,就要为韩国选手下注──但他敲击键盘时临时改了主意。为什么?他说不清,但直觉告诉他,也许这些邮件中有戏,值得循迹追踪下去。而且,说到底,即使这次上了当,损失不过是200元人民币嘛,不值一提。
事后他非常庆幸,他按直觉行事是做对了。第三场比赛结束,爆了一个大冷门,日本的D老人竟然中盘战胜了韩国的小E!据说大部分彩民都痛失这一分,而切尼姆斯在庆幸之余,不禁对那两个“大虾”产生了兴趣。他急切地盼着下一封邮件。
先生/女士:
非常感激你再一次信任我们!可以说我们已经是知音啦。谨通知你,下次比赛即日本的D对中国的D时,仍是日方取胜。
再透露一点小机密:我们两人发明了一种算法,暂时命名为“鬼谷子算法”。它可以基于不完备的资料,在进行多重可公度计算后,得出理论上准确的预测。坦率地说,我们的算法尚不完备,但用来对付围棋擂台赛这样简单的两参数博弈,绝对是小菜一碟。我们很想找一个陌生人来试一试这个算法的威力,就随机地选中了你。所以──请尽管放心地按我们的预测投注,你一定会夺得一等大奖。
哲学家们说,不可能绝对准确地预测未来,因为一个能准确预测的世界没有“自由意志”的存身之地,二者构成了哲学层面上的悖论。但你会看到,我们将挑战这个结论。前提是:你不要把我们的预测透露出去,也就是说,不要过于强烈地干扰世界的本来进程。古代的算卦先儿说“天机不可泄露”,实际是同样的道理。
我们相信你会保密的,毕竟你也不愿意让更多的人来分享你的大奖彩金,对不对?
邮件的署名也变了:“两个小有才气的年轻数学家/某年某月某日”。到这时,切尼姆斯已经对他们产生了浓厚的兴趣。虽然按他的电脑预测,第四场打擂中国选手胜面较大,但他没有犹豫,立即按信中的预测投了注。此时他关心的已经不是投注的收益,而是这两个想“挑战哲学家的年轻人”。他决定一直按他们的预测投下去,看看最后会是什么结果。
第四场比赛结束,那位已经是过气明星的日本华裔老棋手又灿烂了一次,以一目半战胜了中国的D选手。切尼姆斯的账上也因此又增加了宝贵的一分。
这么着一直到了第十场比赛结束,切尼姆斯十次竞猜全中。他的兴趣越来越浓,并把有关情报向上级作了汇报。所以,他对“鬼谷子算法”的关注,已经从“副业创收”的层面上升到职务研究,以后再占用工作资源也就理直气壮了。等第11次邮件发来时,切尼姆斯使用技术手段进入中国网通的资料库,查出了邮件发自这个国家H省省会Z市某家宽带用户,户主叫张仪,住在某街某号。
因为他的工作性质,他在中国有相当广泛的交往。第二天他约见了一个籍贯是H省Z市的中国朋友李士诚。切尼姆斯确实按那两人的嘱咐,未把预测结果向任何人扩散,但李士诚是例外。因为切尼姆斯知道,在今后的工作中需要李的参与。约见地点是在北京饭店。听了切尼姆斯的介绍,李士诚没有丝毫迟疑,决然地说:
“一定是骗子!你尽管相信我的话,他们一定是骗子!”他甚至对切尼姆斯先生的幼稚轻信十分惊奇,“你──竟然相信他们?”
切尼姆斯笑道:“我并未相信他们,也没有不相信他们。这取决于他们以后的预测是否准确。如果次次都准,那必定有什么值得探究的原因。”他分析道,“如果这是个骗局,那只有一种可能:比赛组织者已经事先设定了每一局的输赢,这个结果又被那两人窃得,想转卖给我。
但我相信,三个国家的15位围棋名家绝不会通同作弊吧。”
“那当然不会。但给你发邮件的人肯定是骗子,这一点也不用怀疑。只说一个反驳理由就够了:如果他们能准确预测,为什么不严守秘密自己去投注?他们和钞票有仇?几个亿的彩金啊。”
切尼姆斯点点头:“你说的确实是一个非常有力的理由。但凡事都有例外。”
李士诚对他的迂腐大摇其头,觉得保护这个天真的外国友人不上当,是他义不容辞的责任。为了充分说服朋友,他坦率地说:
“这句话说出来很让人脸红的──我的家乡可是盛产骗子的地方。这些骗子常常能进行超常思维,让你防不胜防。举一个我经历过的例子吧。大约是30年前,我上小学。有一天放学回家,街口的人群中,一位气功师正炫耀他能用指头钻穿砖头,并请在场哪一位到附近随便找一块砖头来,交给他当场表演。我那年10岁,正是好奇兼好事的年龄,立即钻出人群,跑了很远,捡到一块半截砖,跑回来交给那人。那人运运气,用食指刷刷地钻砖,顿时砖屑横飞,砖头很快就钻透了。我佩服得不得了,心想今天碰上真正的武林高人了。以后再有人怀疑,我就会挺身而出加以反驳──怎么可能是骗子呢,那块砖头可是我亲自在路上捡到的!实际上呢,你猜是咋回事?”他停了一下,问切尼姆斯,后者笑着摇头。“这个骗局非常简单:那位气功师在每次扎场子之前,先把方圆200米之内的砖头仔细清理走──他知道找砖的人不会走太远的。然后放上几块做过假的砖。这些砖都用钻头钻了洞,把洞壁打磨光滑,再用糨糊掺砖屑仔细堵好,外表上看不出来。就这么着,我心甘情愿地为那骗子做了一回托儿,还是免费的。”
切尼姆斯哈哈大笑:“有意思,真有意思。”
“那就再说一种我亲身经历过的骗局。喂,麻烦小姐给我找一根软带,一两米长就行。”服务小姐听他摆龙门阵也来了兴趣,很快找到一根布带,含笑送来了。李士诚把软带对折,再以对折点为中心把软带盘成圆,圆心处形成颇似太极图的形状,出现了两个对折点。“这是中国民间非常普遍的骗局,俗称‘扎圈’。可以说中国凡有井水处就有‘扎圈’,还发展成不同的变型。骗子是这样干的:先把绳子盘好,请参赌人判断出真正的对折点,用筷子扎住那片空间,然后庄家捏着两根绳尾向外拉。如果你扎对了,软绳就会卡到筷子上,你就赢了。如果扎错,软绳就会沿着筷子滑走,你就输了。但实际上呢,你永远都不会赢。看得出来这是如何捣鬼的吗?”
切尼姆斯认真揣摩一会儿,摇摇头。他的智商颇高──干他这一行,没有高智商不行,但他一时半会儿没能破开这个“局”。李士诚笑了:
“其实也非常简单。如果你扎错了,庄家就按正常动作,捏着两个绳尾向外抽绳,软绳就会沿筷子滑走,你就输了;如果你扎对了,庄家就在手掌的掩护下,用小拇指把最外圈的那段绳子拨走,再把第二圈和第三圈并起来一块儿往外抽,这时软绳仍会沿着筷子滑走。所以,除了骗子的托儿,外人永远赢不了的。我第一次见这种骗局时,蹲在那儿研究了将近一个小时,总算弄明白了。”
切尼姆斯钦服地说:“不错,你能参透这样的骗局,我想你的智商一定很高。”
李士诚自嘲说:“嘿,小聪明而已,人们常常把太多的聪明用到不该用的地方。喂,听了我说的故事,你还相信那两位‘年轻数学家’吗?”
切尼姆斯略略犹豫,他并没有被说服:“你举了很多超常思维的骗局,很有说服力。你还提出对那两人动机的怀疑,这点怀疑也很有力度。但相反的证据更有力度:不管以什么办法,反正这两人已经在连续11次赛局中全部猜对了结果,并在比赛之前就通知了我。这是我亲身经历的事实。对这点,你如何解释?”
李士诚摇摇头:“我暂时找不到解释。我说过,骗子们常常有超常思维,正常人很难参透的。”“那咱们拭目以待吧。如果余下三次比赛他们仍能预先料定的话,那这个‘鬼谷子算法’就肯定是真玩意儿。14次全部猜中的概率只有/214,即1/16384。如此准确的预测,靠你刚才说的那些小骗术,无论如何是达不到的。”
“那好,往下看吧。有什么进展请及时告诉我。”他警告说,“估计他们很快就会要你掏钱了。凡是骗局,没有不牵涉到金钱的,这是我集多年经验而确立的骗术第一定律。”
两人把这个话题抛开,扯了一会儿闲话。切尼姆斯问李士诚的孩子是不是读到高二了,李士诚早先说过,让儿子上完高中就去美国上学,但美国目前对中国人的签证把关相当严,切尼姆斯早就答应过帮他疏通。“孩子办签证有困难的话,及时通知我。朋友的承诺永远有效。”
李士诚衷心地说:“谢谢。有困难我一定会去找你。”
切尼姆斯唤服务小姐过来,结了账。当然不会是西方的AA制付费,切尼姆斯早就熟稔了中国人情交往的规矩。
两个月后,即擂台赛的决赛之前,切尼姆斯给李士诚发了一封邮件,其中转发了那两人的第13封邮件:
先生/女士:
已经是最后一次竞猜了,如果你再按我们的预报投注,就会把一等奖稳稳收入囊中。这会儿我们忍不住说两句心里话:我们也很想参加投注啊,自打有了“鬼谷子算法”,我们就很难抵制发财的诱惑。但是不行,在武侠小说中有一条道德准则:绝顶高手都不会轻易使用武功。这个定律实际上是真正的自然之定律:凡是拥有某种超常的力量、能轻易获得太大的利益时,拥有者都会严格自律,否则就会造成社会的剧烈失衡,最终反弹到这些高手身上。所以,我们只好怀揣宝器而安贫守穷了。
不过我们至少有权收取操作中的费用。因此请你对我们做一点小小的补偿:向下边的账号中打入2000元(区区2000元),随后我们就会把第14次比赛的预测结果通知你。
实在不好意思!不过,相比我们奉送给你的大礼,这点补偿你肯定会乐意付出的。
两位觍颜的穷数学家
某年某月某日
李士诚看了邮件后立即把电话打过来:“哈哈,我说对了吧?凡是设骗局,肯定会牵涉到金钱。他们的狐狸尾巴已经露出来了。”
切尼姆斯也有同感,这封邮件大大降低了那两个“天才数学家”在他心目中的地位:“对,你可能说对了。其实他们根本不用这么小家子气,一定要我先付2000元才能换来预测结果。假若他们真能帮我赢得数百万元大奖,事后我会心甘情愿地送他们一半。这种做法太小家子气了。”
“但你肯定会付这2000元的,对吧?”
“当然。不管怎样,他们已经预测准了13次,我仍然相信,他们手里确实有些真东西。”
李士诚思索一会儿:“你是否有手段查出,有多少人向那个账号汇款?”
切尼姆斯立即说:“对,你的提醒很对!只要是网上交易,我都可以查出的,我一个朋友年轻时是美国有名的黑客,搞定这些对他很容易,虽然他远在美国。”
一个星期后,切尼姆斯在北京饭店再次约见了他的中国朋友。擂台赛已经尘埃落定,中国的A选手战胜了韩国的常胜将军A,算是又爆了一次冷门。但切尼姆斯又赢了。投注的结果已经公布,彩民中有602个一等奖(比切尼姆斯预测得多),平分了6.2亿元的一等奖彩金,每人得到103万元。这个数目比切尼姆斯的预期要低,但也相当可以了。
根据李士诚的提醒,切尼姆斯请他的上级(并不是黑客朋友,在这点上他没对李士诚说实话)查出,在602个一等奖中有597名向那个账号汇过款。也就是说,那两位“操守高洁”的穷数学家并不仅仅对切尼姆斯通报了预测结果,还至少向另外的596人发过类似的邮件,并从中得到将近120万元的收益,比一等奖得主还多一点。所以,李士诚此前的断言至此得到了验证:这仍是一次基于金钱利益之上的骗局。但令切尼姆斯百思不得其解的是:他们为什么采用如此迂回的办法来得到120万元,而不是直接投注?那样的话,他们得到的利益会远远多于这个数(因为一等奖得主的人数可能大大减少)。
另一个难解的疑点也仍然存在:尽管他们的目的是骗钱,但他们如何作出14次准确的预测?这可是硬碰硬的事,玩不得一点儿虚。602个一等奖中有597名是借那两人的预测而成功的──这个事实更让切尼姆斯相信,他们的“鬼谷子算法”确实是真玩意儿。
“李,我想请你帮忙做一件事。”酒席上切尼姆斯说,“这个谜底不解开我会寝食难安。我想到H省Z市面见那两人,探出真情。如果是一个巧妙的骗局,我会一笑了之;如果那个‘鬼谷子算法’是真东西,我想经过合法的程序,出重金把它买下,相信它对高华盛证券公司的经济预测大有裨益。办这件事,一个外国人有诸多不便之处,也许中国国家安全部会怀疑我是在搞间谍活动呢。”他笑着说,“所以想请一位中国人陪我一块儿去。我会付你足够的佣金。”
上一章:泡泡 | 下一章:亚当回归 |